For over 30 years, TOMAR Electronics, located in Gilbert, Arizona, has engineered, designed, and manufactured the highest quality, most reliable and extremely efficient audible and visual warning signals. Tomar Electronics is dedicated to perfecting strobe and LED technology and continues to define the standard for warning light performance into the twenty-first century.

From assemblers to administration, TOMAR is continually improving manufacturing efficiencies while preserving the consistent quality of our work. We take great pride in our efforts toward providing innovative products that save lives.

Research and Development
The cornerstone of innovation.

The performance and reliability of TOMAR products evolves from over a quarter century of intensive research and development of high efficiency electronic circuit designs and innovative optics.

TOMAR’s staff of highly specialized engineers employ state-of-the-art electronic design and testing equipment to create the most advanced warning signals available. TOMAR’s testing and research equipment includes:

- An advanced computerized circuit simulator that defines critical tolerance parameters and troubleshoots for potential design weaknesses.
- Surface Mount Technology Computer Automated (SMT) Component Pick and Place Assembly
- A 100 foot automated light measurement tunnel which uses photometers calibrated to display measurements in candelas effective in accordance with FAA, and IES standards. High speed photodiodes are used to measure and display light pulse wave shapes to insure accuracy in light intensity output specifications.
- A fully equipped and certified test lab, capable of making all tests and measurements.
- A fast scanning spectroradiometer for color measurements.

Manufacturing and Quality Control Striving to produce high quality products.

Rigorous quality control standards and detailed inspections are implemented at various stages in the production process. Fixture “burn-in” provides for an unprecedented 100% testing of all TOMAR products to ensure accurate and trouble free performance for the life of the strobe. Statistical Process Control is used to monitor production quality with detailed precision. TOMAR’s warranties are among the longest in the industry, made possible by the dedication to quality in both the design and manufacturing processes. A computerized system integrating order entry, inventory, and production control helps to facilitate rapid order fulfillment.

TOMAR Online
Visit our web site for the latest product up-dates, documentation and many other helpful information at: www.tomar.com
TOMAR's 209X–SD and ST model Optical Preemption Detectors sense the optical pulses emitted by properly equipped emergency or transit vehicles. Mounted to observe the approaches of an intersection, 209X–SD and ST Detectors are used with TOMAR 2000 and 3000 Series Optical Signal Processors to inform the traffic control system of the presence of designated vehicles.

Using 209X-SD or ST detectors and Strobecom II throughout your traffic control system reduces emergency response time, allows emergency vehicles to travel with greater safety, and improves transit vehicles timeliness.

Optical Preemption Detectors

TOMAR's 209X-SD and ST model Optical Preemption Detectors sense the optical pulses emitted by properly equipped emergency or transit vehicles. Mounted to observe the approaches of an intersection, 209X-SD and ST Detectors are used with TOMAR 2000 and 3000 Series Optical Signal Processors to inform the traffic control system of the presence of designated vehicles.

Using 209X-SD or ST detectors and Strobecom II throughout your traffic control system reduces emergency response time, allows emergency vehicles to travel with greater safety, and improves transit vehicles timeliness.

Optical Preemption Emitters

An Emitter is a Xenon strobe light system which is mounted on Emergency and Transit vehicles or within our Heliobe™ and Scorpion™ lightbars. The Emitter generates an optical signal. This signal is received by Strobecom II detectors located at the traffic intersection. The emitter is normally wired so that it automatically activates when the emergency lighting is active. TOMAR emitters also include an automatic shutoff, which can be connected to the vehicles parking brake or neutral safety switch. When the vehicle is in park or neutral, the emitter is automatically shut off preventing intersection lockup.

Optical Signal Processor Cards

The Optical Signal Processor (OSP) receives the electrical signals from the optical preemption Detectors. While being received, the signals are processed to determine if the vehicle is a valid emergency or transit vehicle.

The OSP is connected directly to the preemption inputs of the traffic controller in the intersection in which it is installed. When a vehicle’s signal is accepted as valid, the OSP sends a preemption request to the proper input of the traffic controller.

The traffic controller then safely manipulates the traffic signals according to a preprogrammed algorithm. Depending on where the traffic controller was in its normal routine the vehicle will receive a "Green Light" after a minimum of 3 or more seconds. Traffic signals which are already green will stay green until the vehicle passes.

Detector/LED Confirmation Light Assembly

The 2097 Detector/LED confirmation light assembly combines one of TOMAR's Strobecom II detectors with a low-voltage, super-bright, LED confirmation light in one easy to mount and wire assembly. The weatherproof tilt/swivel mounting hardware is constructed of corrosion resistant anodized and powder coated aluminum and stainless steel with galvanized steel locking nuts.

Fire Station Mounted Emitter System

The model FSEMIT Fire Station Emitter System provides a way for emergency vehicles leaving a fire station to preempt nearby traffic intersections and clear traffic blocking the roadway in front of the fire station.

Strobeswitch Emergency Vehicle Access System

The model 1790 STROBESWITCH™ is a compact low cost detector which detects a special strobe light signal and opens access gates to allow quick entrance. The detector is activated by the strobe emitters used by most fire department emergency vehicles to control traffic signals en route to a fire. The 1790-1014 STROBESWITCH™ interfaces with the TOMAR model 780–1228–PRE or 3M OPTICOM® traffic preemption optical signal emitters. The model 1790 features a 1/2” female pipe hub mounting base.
TOMAR’s 209X–SD and ST model Optical Preemption Detectors sense the optical pulses emitted by properly equipped emergency or transit vehicles. Mounted to observe the approaches of an intersection, 209X–SD and ST Detectors are used with TOMAR 2000 and 3000 Series Optical Signal Processors to inform the traffic control system of the presence of designated vehicles.

Using 209X-SD or ST detectors and Strobecom II throughout your traffic control system reduces emergency response time, allows emergency vehicles to travel with greater safety, and improves transit vehicles timeliness.

Optical Preemption Detectors

TOMAR’s 209X–SD and ST model Optical Preemption Detectors sense the optical pulses emitted by properly equipped emergency or transit vehicles. Mounted to observe the approaches of an intersection, 209X–SD and ST Detectors are used with TOMAR 2000 and 3000 Series Optical Signal Processors to inform the traffic control system of the presence of designated vehicles.

Using 209X-SD or ST detectors and Strobecom II throughout your traffic control system reduces emergency response time, allows emergency vehicles to travel with greater safety, and improves transit vehicles timeliness.

Optical Preemption Emitters

An Emitter is a Xenon strobe light system which is mounted on Emergency and Transit vehicles or within our Heliobe™ and Scorpion™ lightbars. The Emitter generates an optical signal. This signal is received by Strobecom II detectors located at the traffic intersection. The emitter is normally wired so that it automatically activates when the emergency lighting is active. TOMAR emitters also include an automatic shutoff, which can be connected to the vehicles parking brake or neutral safety switch. When the vehicle is in park or neutral, the emitter is automatically shut off preventing intersection lockup.

Optical Signal Processor Cards

The Optical Signal Processor (OSP) receives the electrical signals from the optical preemption Detectors. While being received, the signals are processed to determine if the vehicle is a valid emergency or transit vehicle.

The OSP is connected directly to the preemption inputs of the traffic controller in the intersection in which it is installed. When a vehicle’s signal is accepted as valid, the OSP sends a preemption request to the proper input of the traffic controller.

The traffic controller then safely manipulates the traffic signals according to a preprogrammed algorithm. Depending on where the traffic controller was in its normal routine the vehicle will receive a “Green Light” after a minimum of 3 or more seconds. Traffic signals which are already green will stay green until the vehicle passes.

Detector/LED Confirmation Light Assembly

The 2097 Detector/LED confirmation light assembly combines one of TOMAR’s Strobecom II detectors with a low-voltage, super-bright, LED confirmation light in one easy to mount and wire assembly. The weatherproof tilt/swivel mounting hardware is constructed of corrosion resistant anodized and powder coated aluminum and stainless steel with galvanized steel locking nuts.

Fire Station Mounted Emitter System

The model FSEMIT Fire Station Emitter System provides a way for emergency vehicles leaving a fire station to preempt nearby traffic intersections and clear traffic blocking the roadway in front of the fire station.

Further information on these and other TOMAR preemption and traffic control products can be found at: www.tomar.com/traffic or contact your local distributor.

Strobeswitch Emergency Vehicle Access System

The model 1790 STROBESWITCH™ is a compact low cost detector which detects a special strobe light signal and opens access gates to allow quick entrance. The detector is activated by the strobe emitters used by most fire department emergency vehicles to control traffic signals en route to a fire. The 1790–1014 STROBESWITCH™ interfaces with the TOMAR model 780–122B–PRE or 3M OPTICOM® traffic preemption optical signal emitters. The model 1790 features a 1/2” female pipe hub mounting base.
For over 30 years, TOMAR Electronics, located in Gilbert, Arizona, has engineered, designed, and manufactured the highest quality, most reliable and extremely efficient audible and visual warning signals. Tomar Electronics is dedicated to perfecting strobe and LED technology and continues to define the standard for warning light performance into the twenty-first century.

From assemblers to administration, TOMAR is continually improving manufacturing efficiencies while preserving the consistent quality of our work. We take great pride in our efforts toward providing innovative products that save lives.

Research and Development
The cornerstone of innovation.

The performance and reliability of TOMAR products evolves from over a quarter century of intensive research and development of high efficiency electronic circuit designs and innovative optics.

TOMAR's staff of highly specialized engineers employ state-of-the-art electronic design and testing equipment to create the most advanced warning signals available. TOMAR's testing and research equipment includes:

- An advanced computerized circuit simulator that defines critical tolerance parameters and troubleshoots for potential design weaknesses.
- Surface Mount Technology Computer Automated (SMT) Component Pick and Place Assembly
- A 100 foot automated light measurement tunnel which uses photometers calibrated to display measurements in candelas effective in accordance with FAA, and IES standards. High speed photodiodes are used to measure and display light pulse wave shapes to insure accuracy in light intensity output specifications.
- A fully equipped and certified test lab, capable of making all tests and measurements.
- A fast scanning spectroradiometer for color measurements.

Manufacturing and Quality Control
Striving to produce high quality products.

Rigorous quality control standards and detailed inspections are implemented at various stages in the production process. Fixture "burn-in" provides for an unprecedented 100% testing of all TOMAR products to ensure accurate and trouble free performance for the life of the strobe. Statistical Process Control is used to monitor production quality with detailed precision. TOMAR's warranties are among the longest in the industry, made possible by the dedication to quality in both the design and manufacturing processes. A computerized system integrating order entry, inventory, and production control helps to facilitate rapid order fulfillment.

TOMAR Online
Visit our web site for the latest product up-dates, documentation and many other helpful information at: www.tomar.com